

Dense RAN: Handling Interference in a Dense City Environment

GTI workshop, Tokyo
Dr. Phil Fleming, Head of Radio Technology & Engineering

NSN Concepts for High Density City Environment

Stadiums are challenging venues that test wireless data systems

The solutions depend on the penetration of smartphones and the density of the crowd

- Light to medium
 Add more macrocell capacity
- Medium to heavy Macros and picocell clusters over ethernet
- Heavy++ load
 Dense RAN using Macros/picos and

PicoRRH over fiber w/BB pooling to eliminate the cell edge

Spectrum of Architectures to Supplement Macrocells and Eliminate the Cell Edge

IP Backhaul: Delay Tolerant >10ms Including Wireless

IP Backhaul; In-building/Enterprise Wiring, Network (CAT5, Switching/Routing) Latency ~10ms

Fiber-Interconnect Dense AP/RRH <1ms latency

increasing user density

Core

DistributedScheduler Packet-based Coordination

Ethernet/Wireless BH + picoAP

Centralized scheduler Joint Receiver/Transmitter

Fiber + picoRRH

Nokia Siemens

Dense RAN solutions

- Stadiums have the densest population of smart phones in the world
- Up to 100,000 fans sending videos to friends and watching highlights on *Youtube*
- Many small (unobtrusive) low power cells over fiber or Ethernet

The user's signal quality degrades as more cells are added to the stadium

The user's signal quality degrades as more cells are added to the stadium

The Interference Dimensionality Problem

Comparison of Stadium Dense RAN Uplink Methods

Elimination of the cell edge on the uplink

Downlink without Dense RAN

In 32-sector stadium system, the low throughput users cluster on the cell edge

Downlink with Dense RAN

Dense RAN transmission algorithms leverage the reciprocity of TD-LTE Fewer low throughput users that are clustered in the outer rim of the CoMP set Dense RAN will use overlapping CoMP sets to eliminate the cell-edge

Bottom 10% throughput users' location distribution

11

Downlink Dense RAN Throughput comparison

Summary

NSN has Dense RAN solutions for both UL and DL

- Pico clusters using advanced joint reception and transmission algorithms
- Advanced architectures enabling overlapping CoMP groups of cells

Dense RAN Solutions designed for and evaluated in the most challenging ultra-dense venues in the world: **Stadiums**

Dense RAN efficiently handles high interference venues by eliminating the cell edge using overlapping clusters

